
TrafficFluid-Sim: Extending SUMO for

Microscopic Simulation in Lane-Free Traffic

User Manual

Dimitrios Troullinos, Iason Chrysomallis, Ioannis Papamichail, and Markos
Papageorgiou

Dynamic Systems & Simulation Laboratory, Technical University of Crete

{dtroullinos, ichrysomallis, ipapamichail, mpapageorgiou}@tuc.gr

Abstract

TrafficFluid-Sim is a microscopic simulation tool for lane-free traffic environments con-
sidering Connected and Automated Vehicles. It was developed within the frame of the
research project TrafficFluid. In this manual, technical information for users is presented.
More specifically, it includes: installation and setup instructions (both for Windows 11 and
Linux users), instructions for setting up lane-free traffic scenarios, design guidelines for lane-
free vehicle movement strategies, usage of the provided API and other relevant features of
the simulator.

1

Contents

1 Overview 4
1.1 Motivation . 4
1.2 How to cite . 5
1.3 Notes for Developers . 5

2 Setup in Windows 10/11 6
2.1 Environment Variables . 6
2.2 Visual Studio Setup . 12

3 Setup in Ubuntu Linux 14

4 Setup in Other Linux distributions and MacOS 16

5 Lane-Free Plugin and Basic Principles for Designing Lane-Free Vehicle Move-
ment Strategies 16
5.1 Code Structure . 16
5.2 API . 17
5.3 Information Retrieval and Vehicle Control . 18

5.3.1 (Double) Double Integrator Model . 21
5.3.2 Bicycle Model . 22
5.3.3 Global Coordinates Control . 23

6 Basic Principles for Setting up Lane-Free Scenarios 24
6.1 Setup for a Highway Scenario . 24
6.2 Lateral Boundaries in Lane-Free Traffic . 28
6.3 Flow Demand in Lane-Free Traffic . 30

7 Online Traffic Network Measurements 33
7.1 Density Measurements . 33
7.2 Speed Measurements . 34
7.3 Flow Measurements with Detectors . 35

8 Available Metrics 37
8.1 Online Simulation Metrics in GUI . 37
8.2 Post Simulation Metrics in Logfiles . 42

9 Store and Replay Scenarios 43

10 Ring-Road 45

11 On-Ramps and Off-Ramps 46
11.1 Scenario Setup . 46
11.2 Controller/Lane-Free Plugin Setup . 47

12 Bidirectional Highways and Internal Boundary Control 48
12.1 Scenario Setup . 49
12.2 Controller/Lane-Free Plugin Setup . 50

13 Roundabouts 51

2

14 Intersection 53
14.1 Opposite Direction Movement . 53
14.2 Bicycles and Pedestrians . 54

15 Platoons 56

References 57

3

1 Overview

The present user manual accompanies TrafficFluid-Sim, a lane-free microscopic simulator de-
signed for research purposes. TrafficFluid-Sim is an extension of SUMO [1] that explicitly targets
lane-free traffic environments. It was developed within the frame of TrafficFluid [8]1, an ERC
Advanced Grant hosted at the Technical University of Crete.

With TrafficFluid-Sim, users can design from scratch and test lane-free vehicle movement
strategies in C/C++, with an API that provides information about the traffic environment,
effectively emulating vehicle-to-vehicle and vehicle-to-infrastructure communication. Each API
function call provided in the code is accompanied with a concise description of its usage and
functionality. The underlying movement dynamics of vehicles can be either the double integrator
model for both the longitudinal (x) and lateral (y) axis, or a bicycle model that better captures
the orientation of the vehicles as well. A variety of common traffic environments can be designed
and simulated, such as: highways, custom on-ramp and off-ramp scenarios, bidirectional scenarios
that can be also tied with emergent infrastructure-based applications such as Internal Boundary
Control (see Section 12), roundabouts, intersections, and ring-roads.

1.1 Motivation

Commonly, extensions of SUMO rely on the Traffic Control Interface (TraCI) API.2 TraCI is
a very convenient tool that provides great flexibility. However, for the microscopic simulation
purposes of lane-free traffic environments, its usage was inadequate primarily for the following
two reasons:

(a) TraCI relies on socket communication, which imposes a significant time bottleneck for
large-scale environments where each individual vehicle needs to request information and
provide control input. Notably, Libsumo3 could alternatively be used to address these
time-related issues. However, its usage is still quite limited.

(b) SUMO is designed from the ground-up considering lane-based environments. Even with
the use of the Sublane Model,4 the structural limitation of lanes is quite present and would
require ad-hoc solutions such as directly influencing the global position of the vehicle, thus
rendering SUMO simply a tool for visualization.

Consequently, we opted to fork the open-source codebase of SUMO, and develop an extension
that targets lane-free environments. We underline two primary aspects that signify the design
of TrafficFluid-Sim when compared to the standard SUMO application. Firstly, we have mod-
ified the internal codebase of SUMO in order to properly model the 2-dimensional movement
dynamics of vehicles, completely disregarding the typical lane-keeping behaviour that is rooted
in the existing simulator. Then, given the emerging nature of the lane-free paradigm and for
practical reasons, we provide the user with a code structure for the development of lane-free
vehicle movement strategies, one that contains an API for direct communication with the main
application. That is in contrast to the typical use of SUMO, where users can select and calibrate
one of the available models for vehicle movement.

In Figure 1, we showcase a high-level overview of the application. Essentially, the available
code structure needs to be compiled following the instructions given below, in Sections 2-4,
depending on the OS. The compiled file is a shared library, with the form of an .so or .dll file in

1Project website: https://www.trafficfluid.tuc.gr
2See: https://sumo.dlr.de/docs/TraCI.html
3See: https://sumo.dlr.de/docs/Libsumo.html
4See: https://sumo.dlr.de/docs/Simulation/SublaneModel.html

4

https://www.trafficfluid.tuc.gr
https://sumo.dlr.de/docs/TraCI.html
https://sumo.dlr.de/docs/Libsumo.html
https://sumo.dlr.de/docs/Simulation/SublaneModel.html

Figure 1: Core components that constitute TrafficFluid-Sim.

linux or windows, respectively. This is then combined with the main application of TrafficFluid-
Sim at execution time.

1.2 How to cite

The present document should be cited if TrafficFluid-Sim is utilized for research purposes:

D. Troullinos, I. Chrysomallis, I. Papamichail, and M. Papageorgiou. Trafficfluid-Sim: Ex-
tending SUMO for Microscopic Simulation in Lane-Free Traffic. Dynamic Systems and Simula-
tion Laboratory, Technical University of Crete, User manual, 2025.

For convenience, the following BIB format can be used:

@manual{trafficfluidsim,

author={Troullinos, Dimitrios and Chrysomallis, Iason and Papamichail,

Ioannis and Papageorgiou, Markos},

title={TrafficFluid-Sim: Extending SUMO for Microscopic Simulation in

Lane-Free Traffic},

organization={Dynamic Systems and Simulation Laboratory, Technical

University of Crete},

edition={User manual},

year={2025},

location = {Chania, Greece}

}

1.3 Notes for Developers

For developers interested in exploring the underlying code of the simulator, it is important to
note the complexity of navigation due to the extensive number of interconnected classes and files.
To assist those interested in the codebase, we provide the following remarks:

• The tool is available for Windows (10/11) and Linux (Ubuntu 22.04 LTS).

• We provide the binaries for Ubuntu 22.04 LTS, but one can build the source code for other
distributions as well following the instructions: https://sumo.dlr.de/docs/Installing/

5

https://sumo.dlr.de/docs/Installing/Linux_Build.html
https://sumo.dlr.de/docs/Installing/Linux_Build.html

Linux_Build.html.

• Custom code changes and additions are annotated with comments labeled “LFPlugin be-
gin” and “LFPlugin end” to clearly indicate the modified sections. An example is shown
below:

• The simulator is based on a fork of the original open-source SUMO code (https://github.
com/eclipse-sumo/sumo), specifically the commit with ID 6c09f092 (dated October 20,
2020).

• We initiated our extension according to https://sumo.dlr.de/docs/Developer/How_To/
Car-Following_Model.html. The central files that handle lane-free vehicle movement,
communication with the dynamic library, and integration with the main application are
located in the src/microsim/cfmodels folder and are titled MSCFModel LaneFree.cpp,
MSCFModel LaneFree.h.

• For Windows, the prerequisite libraries were sourced from the SUMOLibraries repository
(https://github.com/DLR-TS/SUMOLibraries) based on the commit with ID 0c8ca714
(dated May 19, 2020).

2 Setup in Windows 10/11

For Windows installation, we provide a zip file (trafficfluid-sim vx x windows.zip) of the folder
sumo windows that contains the main application. The unzipped folder can be placed anywhere,
but make sure that the path to the sumo windows folder is in English and does not contain
any special character, spaces, etc. The code structure of the user, provided in lanefree plugin,
is required to generate the dynamic library libLaneFreePlugin.dll to be linked with the main
application, namely the sumo-gui.exe executable file inside the bin folder.

2.1 Environment Variables

The use of Environment Variables in Windows systems is essential for linking the application
with specified folders. Go to the Environment Variables:

6

https://sumo.dlr.de/docs/Installing/Linux_Build.html
https://sumo.dlr.de/docs/Installing/Linux_Build.html
https://github.com/eclipse-sumo/sumo
https://github.com/eclipse-sumo/sumo
https://sumo.dlr.de/docs/Developer/How_To/Car-Following_Model.html
https://sumo.dlr.de/docs/Developer/How_To/Car-Following_Model.html
https://github.com/DLR-TS/SUMOLibraries

7

Then, click on the relevant button in the window below:

8

We need to add new entries to the Path variable by pressing the associated variable and pressing
Edit:

9

The 3 new entries should be added as shown below, by replacing the path to sumo windows
folder
C:Users\dtrou\Documents\sumo windows with the one in the user’s system,
and C:\Users\dtrou\Documents\lanefree plugin\Release with the path to the libLaneFreePlu-
gin.dll file. Then, press OK.

10

Moving forward, we need to set the SUMO HOME variable by pressing the New button.

And finally, place as value the path to the sumo windows folder, and press OK to all open
windows.

Note that we applied these changes to the User variables of the logged-in user. However,
one can follow the same procedure for the System variables instead (e.g., if interested to use the
application in a unified setting for multiple users).

11

2.2 Visual Studio Setup

For the provided code structure, we rely on CMake5 to generate the required makefiles, giving us
the flexibility to cross-compile the code across windows and linux systems. For windows users,
we also provide an alternative option in lanefree plugin folder. The file liblanefreeplugin.sln can
be used instead for Visual Studio (not to be confused with Visual Studio Code). Users working
in Windows and not familiar with CMake are encouraged to setup Visual Studio and work with
this version.

Users can find and download Visual Studio from https://visualstudio.microsoft.com/.
Make sure to configure it for C/C++ development (check the related box during installation).
We have checked the code in Visual Studio Community 2019 & 2022.

When the Installer pops-up, one should select the Workload for Desktop development with
C++, as it appears below:

Before proceeding with the installation process, one can perform the following optional
steps, suggested for alignment with the development setup of the main TrafficFluid-Sim appli-
cation. For this, one needs to select the “Individual components” tab (see list of tabs at the top
segment of the snapshot) and search for specific components either by scrolling through the list
or by using the search bar (as indicated in the red box below) and:

1. replace the default option for the Windows SDK, with the version we currently use (as
shown in the image below)

2. include Windows Universal C runtime

3. include C++ Cmake tools for Windows

4. (optional, if git repositories are utilized) include Git for Windows

5See: https://cmake.org/

12

https://visualstudio.microsoft.com/
https://cmake.org/

Note that even after the installation process, the Visual Studio Installer is accessible as a
separate app for any post-installation modifications.

First-time Configuration of the Code Plugin After the installation, users should open the
code through the provided liblanefreeplugin.sln project file inside the lane free plugin example
folder containing the code.

Only for the first time opening the project in a new PC setup, users should check
and verify that their Configuration is set up properly, and make adjustments if necessary to
comply with their own setup. To do so, after opening the liblanefreeplugin.sln, users should
perform the following (as shown in the image below):

1. Change Configuration to Release Mode (if not already)

2. Navigate to Solution Explorer (by default located on the right side of the IDE environment
as shown below), Right-Click on the laneFreePlugin entry and Press the “Properties” op-
tion. In the second image below, check that the Windows SDK Version and Platform
Toolset comply with the setup. In case there is an issue, a relevant message (that this
version is missing) will be displayed instead, and users will be able to adjust the version
with the one available in the system through a drop-down menu when clicking on top of
these.

13

We encourage the Release option as it removes unnecessary checks and compiles a potentially
faster .dll to be bound with the main application.

If interested to perform debugging, the option is available through the Debug mode (instead
of the Release Configuration in step 1. above). In that case, users should make sure to update
the path to their .dll file accordingly, and use the attach to process function right after they open
the main sumo-gui.exe application.

Finally, every time users wish to recompile their code and generate an updated libLane-
FreePlugin.dll file, they can go to Build → Build Solution or use the keyboard shortcut
Ctrl+Shift+B.

3 Setup in Ubuntu Linux

For linux, we provide a compiled version for Ubuntu 22.04 LTS
(trafficfluid-sim vx x ubuntu 22 04 lts.zip) that contains the sumo-gui application inside the bin
folder. For an Ubuntu-based installation, the prerequisite packages (as specified in https://

sumo.dlr.de/docs/Installing/Linux_Build.html) to be installed are:

14

https://sumo.dlr.de/docs/Installing/Linux_Build.html
https://sumo.dlr.de/docs/Installing/Linux_Build.html

sudo apt install git cmake python3 g++ libxerces-c-dev libfox-1.6-dev

libgdal-dev libproj-dev libgl2ps-dev python3-dev swig default-jdk maven

libeigen3-dev

sudo apt install ccache libavformat-dev libswscale-dev

libopenscenegraph-dev python3-pip python3-build

Once these packages are installed, one can launch the main application sumo-gui, given that
the user has generated the shared object libLaneFreePlugin.so file. With the lanefree plugin
folder that includes the code, we provide a CMake configuration that compiles the source files
in the src folder. To make use of the cmake format, i.e., generate first the makefiles and then
compile the project, navigate to the lanefree plugin folder and do the following:

First, create a build folder to generate all build-related files, and enter it:

mkdir build

cd build

Then, run cmake command to generate the makefiles based on the provided CMakeLists.txt
file:

cmake ../.

Finally, compile the project:

make

This will generate the libLaneFreePlugin.so file. Every time users perform changes in the
code, they only need to run the make command again to recompile the final shared object.

It is only needed to perform again the whole procedure when the folder is transferred to a
different path or a new PC.

Alternatively, one can make use of VSCode (https://code.visualstudio.com/), install
the packages related to C/C++ development and CMake Tools, and then open the folder inside
VSCode. The program will automate the whole procedure above.

The sumo-gui application needs to be linked with the libLaneFreePlugin.so when executed. In
Linux, this can be done by either placing sumo-gui and libLaneFreePlugin.so in the same folder,
or run sumo-gui from anywhere and place libLaneFreePlugin.so in the /usr/local/lib folder that
the OS automatically looks for .so files.

Additional Notes: In linux, the sumo-gui application file is portable (not the case for Win-
dows, where the executable is bound to the bin folder), meaning that one can copy it to any
folder for usage. Note that linux users should grant execution rights to the sumo-gui file. This
can be done either through the file manager or with the chmod command, as shown below:

chmod +x sumo-gui

The application in linux-based systems is typically launched through the terminal:

./sumo-gui

15

https://code.visualstudio.com/

4 Setup in Other Linux distributions and MacOS

For this, we expect a user that is proficient with programming tools in general. Full ac-
cess to the TrafficFluid-Sim code is available at the following repository: https://github.

com/trafficfluid-dssl/trafficfluid-sim/. It can be compiled for other linux distribu-
tions or MacOS by following the build instructions for the standard SUMO application (https:
//sumo.dlr.de/docs/Installing/Linux_Build.html). Note that the dynamic library file li-
bLaneFreePlugin.so should be already generated and placed in a location that the OS looks
at, e.g. in the case of Ubuntu at /usr/local/lib. For MacOS, one needs to generate the li-
bLaneFreePlugin.dylib of the code (again with CMake) and again place it accordingly. We
have already made changes in the main CMake file to support MacOS under the newer Ap-
ple silicon (ARM-based SoCs) as well. Users should follow the Homebrew instructions at:
https://sumo.dlr.de/docs/Installing/MacOS_Build.html.

5 Lane-Free Plugin and Basic Principles for Designing Lane-
Free Vehicle Movement Strategies

In what follows, we provide concise instructions for working with the available code structure,
communicating with the main application at execution time, some guidelines relevant to infor-
mation retrieval and control of lane-free vehicles, and the available movement dynamics.

5.1 Code Structure

The source code for the lane-free plugin example is available at:
https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/lanefree_plugin_

example. Inside the src/ folder, we contain the primary 2 files LaneFree.cpp and LaneFree.h that
are responsible for the connection with the main application.

The LaneFree.cpp file has the following structure:

• simulation initialize: The simulation initialize function is executed once before the sim-
ulation begins. Its use is suggested for memory allocation purposes, initialization of global

16

https://github.com/trafficfluid-dssl/trafficfluid-sim/
https://github.com/trafficfluid-dssl/trafficfluid-sim/
https://sumo.dlr.de/docs/Installing/Linux_Build.html
https://sumo.dlr.de/docs/Installing/Linux_Build.html
https://sumo.dlr.de/docs/Installing/MacOS_Build.html
https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/lanefree_plugin_example
https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/lanefree_plugin_example

variables, etc. In addition, a popular use-case is for users interested in inserting vehicles
at the start of the simulation. The provided file includes an example with the function
insert new vehicle that places vehicles inside the simulation according to the initialization
parameters of the user. Notably, a vehicle can be inserted by the user with this function
at any point afterwards during the simulation.

• simulation step: Then, simulation step is the primary function that is executed once
at every discrete simulation time-step and is responsible for the control of the vehicles.
There, the user has the capability through the function calls of API (in LaneFree.h, see
Section 5.2) primarily to a) monitor the current state of the traffic environment and b)
provide control input to each vehicle. Refer to the code example in the provided file.

• simulation finalize: Finally, the simulation finalize is called once after the simulation
ends either normally or abruptly (e.g., user closes the application window or the code
crashes). As such, its purpose is usually for memory deallocation, logfiles, etc.

In addition, we also include several useful event-based functions, namely:

• event vehicle enter(veh id): The event vehicle enter is for purposes of initialization when
a vehicle enters the road (either due to the API function insert new vehicle or due to a flow
demand in the scenario). It is called once when a vehicle enters the road with its unique
ID information (prior the simulation step at the corresponding time-step).

• event vehicle exit(veh id,has arrived): The event vehicle exit is called once when the
vehicle is removed from the simulation, providing its ID information through the first
argument. This can be either when the vehicle reaches the end of its designated route
(then, the input argument has arrived is true) or if the simulation ends while the vehicle is
still on the road. The latter can occur either due to an ending time specified in the scenario,
or premature ending (user closes application window or code crashes). Users can utilize
this function for logfiles relevant to specific vehicles, deallocate memory related solely to
this vehicle etc.

• event vehicles collide(veh id1,veh id2): The event vehicles collide that informs when
there is a collision between two vehicles, providing information of their respective IDs.

• event vehicle out of bounds(veh id): The event vehicle out of bounds informs in case
the vehicle with ID veh id exceeds the road boundaries.

While LaneFree.cpp is the “main” code file that should be available, users can include ad-
ditional files for better code organization. We include a simple example (Controller.cpp and
Controller.h files) that showcases how to include additional files with proper usage of the extern
commands when necessary.

5.2 API

The developed API is responsible for online communication with the main application. Es-
sentially, we have a set of available function calls inside the LaneFree.h file. Each function is
accompanied by a short description of its usage, as shown below.

17

Note that for Windows users in Visual Studio, all header files are bundled inside the External
Dependencies folder alongside other system header files for general purposes.

For reasons of speed and memory efficiency, we primarily rely on pointers for array-based
information. As such, for function calls that yield vector-based information, we usually return a
pointer to the array; and have either a separate function call to retrieve the size of the array, or
rely on pass by reference to fill out the size information in the same function.

Very importantly, memory management of all the returned pointers is handled automati-
cally. Users should:

(a) Never attempt to deallocate these pointers, and

(b) Make sure that they parse/store the relevant information before they call the same function
again, as we usually maintain the same pointers and overwrite the new results on the
corresponding memory addresses.

For some function calls, we rely on the C++ std::vector (https://en.cppreference.com/
w/cpp/container/vector)) template as return value for array-based information.

5.3 Information Retrieval and Vehicle Control

We rely on a discrete time-step that the user can specify when designing a scenario (see Sec-
tion 6.1). As such, one should integrate a vehicle movement strategy within the simulation step
function. Given this, the user should provide appropriate control input at every time-step for
each vehicle inside the simulation, depending on the selected vehicle movement dynamics, as we
discuss in the subsequent Sections 5.3.1 and 5.3.2. Control input is either the 2-dimensional ac-
celeration (in m/s2) or the combination of acceleration magnitude (again in m/s2) and steering
target (in rad) depending on the selected movement dynamics. If control input is not provided for
a vehicle, then a zero control vector is simply applied (retaining current speed and orientation).

Vehicle-related information is requested through the ID of each vehicle, specifically the Nu-
mericalID variable type (consistent with the standard SUMO codebase). To gain access to all
vehicles currently occupying the road, one can use the related function for the array information
and size:

18

https://en.cppreference.com/w/cpp/container/vector)
https://en.cppreference.com/w/cpp/container/vector)

Then, users can iterate over this array, to request information about the vehicle’s current state
with a for loop, as in the basic example below.

The getter functions return information for the parsed ID. In the simple example above we
request basic information for each vehicle, and have a simple controller where the vehicles target
their desired speed objective (des speed) on the longitudinal axis x and 0 lateral speed for the
lateral axis y.

However, we suggest the following alternative way of parsing the vehicles espe-
cially when operating in large road networks. This is accomplished by first iterating over
the road network. Vehicle information is grouped by their residing road segment, and
there we also maintain an ordered array of vehicles according to the longitudinal positioning
of the vehicles. In the example below from the provided LaneFree.cpp file, we show first how to
parse vehicles to be controlled per road edge of the network. With get all ids in edge, we can
get an ordered array based on positioning. This could be useful under certain situations, and is
the suggested way to parse the vehicles.

Typically, in the context of microscopic simulation, we have a closed-loop system where the
vehicle’s controller requires information regarding its surrounding at each new time-step. As
such, the user can acquire such information through the API, e.g., state information of each
vehicle and its surroundings. For the surrounding traffic in a typical lane-based environment,
we would follow the lane structure to provide such information, i.e., leader, follower, and two
closest vehicles in each adjacent lane. In contrast, for lane-free traffic, the user instead specifies a
longitudinal distance (obs distance), based on which we return an array with ID information of
all neighboring vehicles up to that distance. As shown in the code below, there are two separate
function calls to obtain information about neighbors in front or in the back with respect to the
vehicle requesting such information.

Importantly, for vehicle movement strategies where users rely on local coordinates,6 we
strongly suggest the usage of function calls:

6x,y coordinates are with respect to the residing road segment of the network

19

• get relative distance x(ego id, other id)

• get relative distance y(ego id, other id)

to obtain information regarding the distance with surrounding neighbors (longitudinal or lateral,
respectively). This is especially important for environments with multiple road segments, or
when emulating ring-roads (see Section 10). We have carefully developed these functions so
that the distance information captures the change of the local coordinates from the perspective
of the ego vehicle that requests this information (e.g., when a neighbor lies in a different road
segment, just subtracting the local positions for either axis can provide wrong information).
Likewise, if the user is interested not just in the distance information, but the positioning of
the neighboring vehicle (other id), this can be directly inferred by: get position x(ego id) +
get relative distance x(ego id, other id), and equivalently for the y axis. Finally, note that this
is only relevant for positioning of vehicles, and not for the speed-related information in this
context.

Of course, the user needs to apply at the end of the inner for loop statement the calculated
control variables through the apply acceleration function, as shown within the code example.

For better code organization, the user can design the vehicle movement strategy for each
parsed vehicle ID in a function located elsewhere, that can be called at this point. As long as
the header file of the API LaneFree.h is included wherever that function is defined, the user can

20

access all API calls as done in LaneFree.cpp (getting neighbors’ ID information, their current
state, applying the control input, etc). See the example below.

In the following two Subsections, we outline the two available movement dynamics in our lane-
free microscopic simulation environment and the corresponding control input that is required for
vehicle control.

5.3.1 (Double) Double Integrator Model

The Double Integrator Model is the default option for lane-free movement dynamics, and is
already available as an option in the standard SUMO application with the term ‘Ballistic’.7 Its
usage in SUMO is limited only for the longitudinal movement update (x axis), i.e., longitudinal
position x and speed vx. We are interested to extend this for 2-dimensional movement. Therefore,
we embed internally in TrafficFluid-Sim the (Double)8 Double Integrator Model, which likewise
updates the lateral position y and speed vy of the vehicles.

Essentially, the Double Integrator Model assumes a constant acceleration (the control vari-
able) throughout the discrete time-step length T . As such, at time-step k, given an acceleration
input for both dimensions ax, ay (inm/s2), the equations of motion for each vehicle are as follows:

vx(k + 1) = vx(k) + ax · T (1)

vy(k + 1) = vy(k) + ay · T (2)

x(k + 1) = x(k) + vx(k) · T +
1

2
· ax · T 2 (3)

y(k + 1) = y(k) + vy(k) · T +
1

2
· ay · T 2 (4)

The function call in the API for vehicle with ID veh id is:

• apply acceleration(veh id, a x, a y)

7See https://sumo.dlr.de/docs/Simulation/Basic_Definition.html#defining_the_integration_method
8Two dimensions x,y

21

https://sumo.dlr.de/docs/Simulation/Basic_Definition.html#defining_the_integration_method

with a x, a y provided in m/s2.
The use of double integrator is especially targeted towards highways, where the following

considerations are appropriate:

• Orientation of vehicles is always in parallel with the road segment

• Lateral movement is completely independent from longitudinal movement

These assumptions render the design of the vehicle movement strategy much easier, since the
orientation of the vehicle is controlled automatically, and the vehicle follows its routing scheme
as an unfolded straight road, in which it may only need to perform lateral maneuvers in order to
follow it (e.g., on-ramp merging, or exit from an off-ramp).

However, these assumptions may be unfitting for lane-free environments such as roundabouts
and intersections, where the cartesian coordinates might be limiting and the user might be
interested to have control over the orientation of the vehicle as well, or in general a more realistic
depiction of the movement dynamics. For that, we have incorporated the bicycle model as an
alternative.

5.3.2 Bicycle Model

For the bicycle model dynamics, we no longer have independent control over the longitudinal
and lateral movement. Instead, the control variables now are the acceleration magnitude F and
the steering angle δ. We also introduce information regarding the orientation θ of each vehicle.
Then, for the movement dynamics we update the longitudinal (xb(k)) and lateral (yb(k)) rear
axle midpoint of each vehicle; and the speed variable is now 1-dimensional (v(k)) as we now
model the orientation as well. Since we rely on discrete-time microscopic simulation, we again
assume constant values for the two control signals over the time-step length T , and employ the
equations for the movement dynamics from [6], but included an extra case for the position update
(Equations 7, 8) when δ = 0, to avoid division by zero (tan(0) = 0). As such, at time-step k and
with control variables F, δ the relevant variables xb, yb, v, θ are updated for k + 1 as:

θ(k + 1) = θ(k) + v(k)
tan(δ)

l
T + F

tan(δ)

2l
T 2 (5)

v(k + 1) = v(k) + F · T (6)

xb(k + 1) =

{
xb(k) +

l
tan(δ) ·

[
sin(θ(k + 1)− sin(θ(k))

]
if δ ̸= 0

xb(k) + v(k) · cos(θ(k)) · T + F · cos(θ(k)) · T 2 otherwise
(7)

yb(k + 1) =

{
yb(k) +

l
tan(δ) ·

[
cos(θ(k)− cos(θ(k + 1))

]
if δ ̸= 0

yb(k) + v(k) · sin(θ(k)) · T + F · sin(θ(k)) · T 2 otherwise
(8)

with l corresponding to the length of the vehicle, and for the case δ = 0, i.e., the orientation
of the vehicle will remain constant (θ(k + 1) = θ(k)), and the position xb, yb update essentially
reflects the Double Integrator Model.

Important note: Users should be careful when using control values where |δ| < ϵ below
some ϵ threshold that the C++ compiler would render the numerical result of l/ tan(δ) = ±inf .

We can obtain the relevant information that is unique to the bicycle model with provided
API calls. Specifically, for the scalar speed information v(k) with the function:

• get speed bicycle model(veh id)

22

and the orientation of the vehicle θ with:

• get veh orientation(veh id)

For retrieval of position information, user can utilize the same functions as before, but note
that we return the center point of the vehicle. Back position xb, yb can be calculated by ac-
counting for length and width of the vehicle through the available function calls that return such
information. The function call to apply the control input (F ,δ) in the API for vehicle with ID
veh id is:

• apply control bicycle model(veh id, F, delta)

with F provided in m/s2 and delta in rad.

5.3.3 Global Coordinates Control

Following the paradigm of the existing simulation infrastructure of SUMO, we utilize local co-
ordinates for vehicles in order to simplify the design of vehicle movement strategies. As such,
the positioning of the vehicles is with respect to the residing road segment/edge of the network.
Especially for the double integrator case, this is an indispensable choice for road networks where
the orientation of the vehicles should be affected. With local coordinates, the vehicles follow their
designated route and their orientation is automatically adjusted according to the orientation of
the road (see related discussion at the beginning of Section 5.3). Therefore, the user has no
control over turning operations.

This principle is followed for the bicycle model as well, at least in its default mode. While
the orientation of the vehicles can be monitored and controlled, it is always with respect to
the geometry of the residing road. Hence, in a more intricate scenario such as a roundabout,
controlling the vehicles’ turning and overall movement in a circular road over the local coordinates
would be extremely cumbersome; and not actually reflective of the real-world scenario.

To facilitate these use cases, and in general grant full control over the vehicles movement,
there is an alternative option exclusive to the bicycle model. Upon entrance, vehicles that are
specified to be modeled according to the bicycle model, can “switch” to control the vehicle over
the global coordinates with the following function of the API:

• set global coordinate control(veh id, use global coordinates)

for vehicle with id veh id and an additional input argument use global coordinates. The latter
serves as the switch that enables (use global coordinates=1) or disables (use global coordinates=0)
the update of movement based on global coordinates. The suggested placement for this function
is inside the event-based function event vehicle enter(veh id).

Note that global coordinate control is specified per vehicle, and therefore the simulation
infrastructure has the flexibility to simulate different movement strategies that may not use the
same movement dynamics.

Information retrieval for Global Coordinates Control For global coordinates, the func-
tion call for orientation:

• get veh orientation(veh id)

is automatically adjusted to now return the angle of the vehicle with respect to the global
coordinates of the system, and not according to the x-axis of the residing road segment.

23

Important note: The positioning information (get position x,get position y) of the vehicle
maintains the local coordinates’ information. Users should now rely the get global position x,
get global position y to obtain proper information in this mode. Likewise, the distance functions
mentioned earlier (get relative distance x, get relative distance y) are not valid anymore, as they
are targeted towards the double integrator model and address the issue of vehicles having correct
distance information while they reside in different road segments, and therefore have different
local coordinates.

Even though vehicles now operate with global coordinates, we took extra care in order to
maintain the functionality of the functions that return information on neighboring vehicles.
Therefore, each vehicle can—exactly as shown for the local coordinates case—request information
about surrounding traffic either upstream or downstream (with respect to its routing).

As we expand below in Section 6, when setting up a scenario, we need to define each type
of vehicles (as in the standard SUMO9) to be introduced in our lane-free scenario. There, we
need to specify (per vehicle type) which of the two vehicle movement dynamics shall model the
vehicles’ movement and consequently the control input.

6 Basic Principles for Setting up Lane-Free Scenarios

To construct scenarios, we inherit the existing infrastructure of SUMO in order to design road
networks,10 define vehicle types and demand,9 and combine these to a single configuration file.11

Naturally, there are several distinctions within the process in order to adapt to TrafficFluid-
Sim. Below, we contain a highway environment example with accompanying instructions/details
that showcase the basic elements.

In subsequent Sections, we contain examples for more complex environments, and supply the
necessary setup instructions. All examples are available at:
https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples.

6.1 Setup for a Highway Scenario

Users should have access to the accompanying scenario folder 01 highway scenario. For every
scenario (as in standard SUMO), we require three configuration files in xml format, namely a:

• Network file (.net.xml)

• Route file (.rou.xml)

• SUMO configuration file (.sumocfg)

with the associated files inside the scenario folder

9https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html
10Basic tutorial: https://sumo.dlr.de/docs/Tutorials/Hello_World.html
11https://sumo.dlr.de/docs/Tutorials/quick_start.html

24

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples
https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/01_highway_scenario
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html
https://sumo.dlr.de/docs/Tutorials/Hello_World.html
https://sumo.dlr.de/docs/Tutorials/quick_start.html

Network file (.net.xml) The network file can be generated via the Netedit application. For
Windows users, we have a Netedit executable that is tied to our version (inside the netedit
folder), but one can directly use the standard application provided by SUMO. Refer to https:

//sumo.dlr.de/docs/Netedit/index.html to get familiar with the tool.
As a standard practice, we construct roads with one big lane that stretches along the desig-

nated road width, and add additional lanes only when necessary to connect road segments, i.e.,
acceleration/deceleration lanes for on-ramp/off-ramp scenarios (see Section 11). This is relevant
to the demand handling functionality we have developed (refer to Section 6.3), since it operates
over a lane’s width at origin points of the network. Users are encouraged to examine the provided
scenario examples to get more familiar.

Route file (.rou.xml) The route file includes definitions regarding:

• Types of vehicles to appear in the simulation

• All the different routes for the vehicles to follow

• Flow demand

Refer to the example below (highway.rou.xml):

Vehicle Types In each vType xml tag, users can look at9 for basic usage. The essentials
include: define a unique string id, set vclass=“passenger” for vehicles, and the basic charac-
teristics, length, width, maxSpeed (default desired speed), colour etc. The parameters tau and
minGapLat are relevant to the rules that the vehicle will follow for flow demand (see more details
below in Section 6.3).

Important: Users need to set carFollowModel=“LaneFree”. This setting essentially binds
the vehicle’s control (not just for car following) to the dynamic library and grants access to
custom control of vehicles through the API (see Section 5).

25

https://sumo.dlr.de/docs/Netedit/index.html
https://sumo.dlr.de/docs/Netedit/index.html

Then, the carMovementDynamics parameter has by default the value “DoubleIntegrator”.
Therefore, its definition can be omitted for this case. To switch to the bicycle model, this should
be set with the value “Bicycle” as shown in the example above.

One can also utilize the vTypeDistribution of SUMO as shown above, in order to have a
single stochastic type of vehicles that samples one of the defined vTypes inside according to the
probability values.

Routes The xml tag route specifies each route, with a unique string id parameter. One
should again follow the instructions for SUMO9 and also refer to our examples. In short, the
route can be designed either with an array of consecutive edges (as defined in the network file);
or specify only the first and last edge and SUMO has a mechanism to automatically generate
the shortest path.

Important: Within the route tag, we also specify the shape of the lateral boundaries, with
the related tags. If these are not provided, then the vehicle can only assume that the lateral
limits of the road follow its width (through road width information from the API). See below in
Section 6.2 for more detailed instructions.

Flow Demand The flow tag specifies the demand. Again, we rely on the existing format
for SUMO. However, we have devised a mechanism that explicitly targets lane-free environments
on how to introduce new vehicles at any origin point of the network and meet the specified flow
demand. See more details in Section 6.3.

Configuration File (.sumocfg) The configuration file is the central component that combines
all elements. This file is used to launch a scenario, as in the standard SUMO application.

Below, we contain the example for the highway scenario, then outline the primary elements,
their purpose, and direct to corresponding sections that include further information and instruc-
tions for each element.

Regarding the input files:

26

• net-file: Simply add the network file

• route-files: Add the route file (can be multiple)

• gui-settings-file: This is an optional file. We have a simple setting that renders automati-
cally to the desired visualization instead of the default one on SUMO

• additional-files: This is used for additional terms, specifically for specifying detectors. We
refer the user to Section 7.3.

Important argument settings for processing elements:

• step-method.ballistic: This should always be enabled. By default, SUMO employs simpler
movement dynamics with constant speed (instead of constant acceleration) per time-step.

• collision.action: This should always be set to “none”. SUMO can trigger certain actions
when a collision occurs (e.g., teleportation, remove both vehicles12). In all our endeavours,
we do not want to affect the behaviour of the vehicles. Each collision occurrence is reported
through an event function in the provided code structure (see Section 5.1).

• step-length: This is the time-step length T in seconds.

• seed: This is the random seed value, which is also accessible through the API for synchro-
nization with the vehicle movement strategy initialization. Therefore, with proper usage
in the users’ code, this ensures proper reproducibility of simulations.

• video-record-or-replay: This is an optional argument, where one can either “record” the
scenario to the video-logfile value specified in line 18, or “replay” the scenario by loading
the trajectories logfile that was previously recorded. More details on this feature can be
found in Section 9. If not defined, or defined with any other value (e.g., “nothing”), then
this feature is disabled.

Output files:

• tripinfo-output: Contains metrics for each individual vehicle that was spawned in the
network. This feature directly follows from https://sumo.dlr.de/docs/Simulation/

Output/TripInfo.html. See the related Section 8.

• statistic-output: Contains average metric for the whole scenario, e.g., average speed and
delay. Refer again to Section 8 for more details and for clarification of adjustments and
additional metrics we have introduced with respect to standard SUMO.

• video-logfile: Serves a dual purpose. When the scenario is configured to “record”, all
vehicle actions are logged and saved to the specified file. When set to “replay”, the scenario
reproduces all vehicle actions previously recorded and stored in the specified file.

All output files above are optional in principle, and can be omitted if the user is not interested
in the relevant features.

Finally, to open the scenario, users need to launch the sumo-gui executable (inside the bin
folder), and then: File→Open Simulation and navigate to the .sumocfg file inside their scenario
folder. Alternatively(/Equivalently), simply press the Open Simulation button as shown below:

12https://sumo.dlr.de/docs/Simulation/Safety.html#collisions

27

https://sumo.dlr.de/docs/Simulation/Output/TripInfo.html
https://sumo.dlr.de/docs/Simulation/Output/TripInfo.html
https://sumo.dlr.de/docs/Simulation/Safety.html#collisions

A terminal window is launched alongside the main application. There, users can print out
online information through their codebase with regular printing commands (e.g., printf, std::out),
as shown below:

6.2 Lateral Boundaries in Lane-Free Traffic

We illustrate the design of lateral boundaries with 02 highway boundary shrink scenario, a small
variation of the 01 highway scenario. There, inside the route file, we have:

This will make the boundary shrink accordingly. If one loads the scenario, it should look like
this:

Moving boundaries are defined within each route’s definition. Regarding the left boundary,
the user needs to provide the following variables:

• leftBoundaryLevelPoints: contains the different lateral levels (in global coordinates)

28

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/02_highway_boundary_shrink_scenario

• leftBoundaryOffsets: is the offset point in the longitudinal (x) axis (again, in global coor-
dinates)

• leftBoundarySlopes: contains the slope for the corresponding offset point

Given a number N of leftBoundaryLevelPoints, then the associated offsets and slopes should
be N-1 in size. Likewise, the user can provide the same information regarding the right boundary,
at the following variables: rightBoundaryLevelPoints, rightBoundaryOffsets, rightBoundaryS-
lopes.

In the illustrative example (taken from [3]) below:

the yl, ol, sl (yr, or, sr) variables correspond to the leftBoundaryLevelPoints, leftBoundaryOffsets,
leftBoundarySlopes (rightBoundaryLevelPoints, rightBoundaryOffsets, rightBoundarySlopes) re-
spectively. If interested in the underlying equations, users can refer to [3] for a description with
the full equations that control the boundaries.

Online boundary information retrieval through the API From the API part, there is a
function for online information on the moving boundaries:

• get distance to road boundaries at(veh id, longitudinal distance x, * left boundary distance,
* right boundary distance, * left boundary speed, * right boundary speed)

which calculates the lateral distance from left and right road boundaries for veh id, at longitudi-
nal distance x from the center of vehicle veh id (vehicle can also observe upstream with negative
values). Regarding the boundaries, it calculates the boundaries’ distances (assigns values to
the provided pointers left boundary distance, right boundary distance) and speed of the moving
boundary (with left boundary speed, right boundary speed variables). If speed information is
not useful, one can simply place NULL pointers to the respective arguments (left boundary speed,
right boundary speed), and the function will automatically neglect this computation.

We can also visualize both left and right boundaries with these additional arguments:

• leftBoundaryVisualizerColor: select the color for the left boundary visualization (if this
argument is not provided, the respective boundary will not be visualized). Common colors
can be specified in SUMO with a String name, e.g., “white”, “yellow”, “green”. Otherwise,
use rgb coloring either for more customized options, or if users want to have opacity through
rgba coloring. See here (at the 〈COLOR〉 bullet): https://sumo.dlr.de/docs/Basics/

Notation.html#referenced_data_types

• leftBoundaryVisualizerStep: (optional argument) select the visualization accuracy, e.g.,
leftBoundaryVisualizerStep=“10” means that the visualizer will draw a point every 10
meters (and then visualize the boundary by connecting all points). Minimum accepted
(and default) value for this variable is: (length of path in meters) / (8*(#number of
offsets))

29

https://sumo.dlr.de/docs/Basics/Notation.html#referenced_data_types
https://sumo.dlr.de/docs/Basics/Notation.html#referenced_data_types

• leftBoundaryVisualizerLineWidth: (optional argument) select the width of the line, e.g.,
leftBoundaryVisualizerLineWidth=“0.2” means that the line will have a thickness of 0.2
meters. Default value is 0.1.

Same principle is followed for the right boundary: rightBoundaryVisualizerColor, rightBound-
aryVisualizerStep, rightBoundaryVisualizerLineWidth. The only exception is the optional vari-
able rightBoundaryConstant which can be prescribed only for the right boundary, and is relevant
for the Internal Boundary Control application (see Section 12 for more details).

Limitation: The lateral boundaries only work for road networks where all road segments are
in parallel to the x axis. However, it fully supports bidirectional scenarios, as shown in the
example for Internal Boundary Control (see Section 12).

6.3 Flow Demand in Lane-Free Traffic

A major aspect of microscopic simulation is setting up demand at origin points of the network.
Following the existing SUMO infrastructure, users specify demands in the route file (as discussed
in Section 6.1). Each flow demand is specified for a time window through the begin and end
tags, with values in seconds, and users need to assign a desired flow either with the parameter
number or probability. For number, the exact amount of vehicles will be inserted, spread
uniformly across the given time window. For probability, a vehicle is inserted at every time-step
based on the outcome of a random sample according to this probability.

Important note: When specifying a demand with number in SUMO, vehicles spawn in
a deterministic manner (uniformly spread throughout the designated time window). This can
be alternatively performed in a stochastic manner by instead providing the probability value.
However, the way SUMO handled this for lane-based environments would be quite limiting in
lane-free settings. In the standard application, the probability value determines the chance that
a vehicle will spawn per second. As such, the maximum achievable flow is 3600 veh/h. For
a lane-based system, this limit is acceptable as it exceeds the maximum achievable value (per
lane) under realistic conditions in a highway. However, in lane-free settings, such flows are quite
limiting.

Thereby, we have modified this behaviour, and now probability value p determines the
chance that a vehicle will spawn per discrete time-step T , e.g., for a time-step length T = 0.2s,
the maximum flow (p = 1) would be: 18000 veh/h (= (1 veh)/(T s) · (3600 s/h)). In general,
given a desired demand value d (in veh/h), the user can calculate the corresponding probability
value p by:

p =
d · T
3600

(9)

Additional note: When using probabilities, this relationship between probability and de-
mand follows the probabilistic nature of random sampling, i.e., for small amount of vehicles
(small demand values and/or time windows), the sampled flow will not necessarily coincide with
the true mean (the specified demand d). Based on the law of large numbers, a proper inference
of the true mean can be obtained with more samples (e.g., through increasing time window or
averaging the flow information on the same scenario with multiple seed values).

According to a demand, either through the number or probability, users can also specify how
the vehicles should be inserted in the road, through the insertionPolicy option within the flow
xml tag. This will select one of the available policies to insert vehicles in the road. The default
policy we have developed is latExploit, which automatically inserts vehicles based on the user-
specified tau (time-gap/time headway) in seconds and minGapLap (minimum lateral distance

30

between vehicles) in meters. These values are taken from the corresponding vehicle type to be
inserted, as specified inside the .rou.xml file (see Vehicle Types in Section 6.1). The provided
scenario 03 highway flows scenario demonstrates all different insertion policies. Users can refer
to this example and have a look inside the highway.rou.xml file for proper usage:

The available insertion policies are the following:

• latExploit: (default) If no policy is specified, this will be automatically employed. Each
vehicle to be inserted will examine the road near the entry for available lateral regions
that comply with the tau and minGapLat parameters. If none can be found due to high
density situations, then the vehicle remains in the virtual queue. Otherwise, it randomly
chooses a feasible lateral placement to enter. Entry (longitudinal) speed is the specified
departSpeed parameter (in m/s). However, this can be mitigated due to slower vehicles in
front in order to avoid strong decelerations. Refer to [8] for a more detailed presentation
(termed as method 1 in the related Section on demand handling). See snapshot from the
simulator below near the road entry for flow “flow1” from the relevant example:

Accompanying parameters to specify:

– latLow, latHigh: By default (if not specified), these values are set as: latLow=“0.0”
and latHigh=“1.0”, corresponding to the full lateral capacity of the road. Users
can restrict (per flow) entry to specific lateral parts of the road by setting these
two parameters accordingly. For example, if latLow=“0.0” and latHigh=“0.5”, then
vehicles will only be inserted at the right half of the road (bottom half from the top-
down view). This functionality can be useful for several use-cases, e.g., vehicles that
will soon need to exit to an off-ramp. See snapshot for flow “flow2” with latLow=“0.2”
and latHigh=“0.7”:

31

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/03_highway_flows_scenario

– departSpeedLimitFrontDist: If this parameter is not specified (default option),
then the departure speed (departSpeed parameter) of the vehicle to be inserted will
be affected according to the average speed (avgSpeedFront) of the first 5 vehicles from
the entry point. Then departSpeed=min(avgSpeedFront,departSpeed). If specified,
then the average speed measurement will take into account all vehicles within the first
departSpeedLimitFrontDist meters of the road.

– departSpeedLimitDownstream: (for more experienced users, we do not suggest
disabling this option) This is a boolean (takes true/false or 1/0 values) parameter,
and it controls whether the departSpeed will be affected by the neighboring vehicles.
By default (if not specified), this functionality is enabled, as it allows for an adaptive
departure speed that also better correspond to a real-life scenario and avoids many
unnecessary situations due to speed deviations of vehicles. However, we provide this
“switch” for users that do not want the departSpeed to be affected by our mechanism.
If set to false, users should proceed with caution as it does not fare well in situations
with high demands.

• desSpeedAlign: If this policy is specified, then vehicles are inserted laterally according
to their desired speed objective. A linear interpolation is established between the two
lateral limits of the road and the lower and higher desired speed objective (desSpeedLow
and desSpeedHigh parameters). As such, the slowest (fastest) vehicles are spawned at
the rightmost (leftmost) part of the road with desSpeedLow (desSpeedHigh) desired speed
objective. Again, vehicles will follow the specified tau (time-gap) and minGapLat (lateral
distance) gaps in order to be spawned. In addition, this insertion policy spreads the
vehicles laterally according to a uniform distribution. Refer to [8] for more details (termed
as method 2 in the related Section on demand handling).

• center: Vehicles can be spawned only at the center of the road, based on a time-gap/time-
headway policy (according again to the tau variables). This is useful for demands on an
on-ramp, where the lateral capacity of the road is limited, and makes more sense to only
insert new vehicles at the road’s center. See snapshot below from the simulator for the
associated flow “flow5”.

• platoon: If this policy is selected, we essentially again rely on the latExploit insertion pol-
icy. However, we now only insert platoons of vehicles. Therefore, the number or probability
values now reflect the number of platoons to be entered (and not individual vehicles). As
such, make sure to properly calculate these values corresponding to the associ-
ated demand based on the selected platoon’s size. Additional parameters to be specified:

– platoonSize: The number of vehicles in each platoon

– platoonTimeStepDistance: The number of time-steps between spawning a new
tailing vehicle in the platoon

See snapshot below from the simulator for the associated flow “flow6”.

32

Users can refer to Section 15 for a detailed usage example.

Important note: One can specify multiple flows that are potentially overlapping in time
(e.g., a platoon demand alongside a simple latExploit for individual vehicles, or multiple simple
latExploit but on different lateral parts of the road). We do not have any limitation on this, but
make note that the virtual queue of vehicles to be spawned will append each vehicle that could
not find a proper place to enter, one that respect the designated gaps. The virtual queue can
be monitored through the main application via the “insertion-backlogged-vehicles” parameter in
the Network window. This measurement is also available per road edge. Refer to Section 8.1 for
more details.

7 Online Traffic Network Measurements

A part of the available functions in the API can be used to get online measurements from the
road network. Below, we detail the usage for each type of measurement:

7.1 Density Measurements

We calculate density measurements based on the number of vehicles per kilometer (veh/km).
There is a list of available functions inside the API with associated comments regarding usage:

Note that all density-related measurements are provided per road edge, where the user needs to
specify the NumericalID of the desired edge. When designing a road network for a scenario (the
.net.xml file), users have specified each edge name in a string format, and SUMO automatically
assigns a unique NumericalID value to each edge when the network is loaded. In practice, users
can utilize the get edge name API function that returns the string information (in char*) when
iterating over each edge id to obtain this information.

33

Measurements in Specific Regions Another common element across most available func-
tions is the inclusion of arguments segment start and segment end. These are specified in
meters, and dictate the region within the road edge that this information should be measured
from, e.g., in the example below

if we assume that what is displayed is the total road segment, its length is 150 meters, and
we are interested only in the last 50 meters, we define the region as segment start=100, seg-
ment end=150. If we are interested in the whole road edge, we simply specify segment start=0,
segment end=get edge width(edge id).

Important Information:

• The same calculations are performed internally for get density on segment region on edge
and get number of vehicles on segment region on edge. The only differentiation is whether
the return value is divided according to the length of the specified segment (to have proper
density value in veh/km) or users are simply interested in the number of vehicles within
that region, respectively.

• In road segments containing more than one lane (e.g., on-ramps, off-ramps in the context
of lane-free traffic), the standard functions above take measurements from the whole road
width. If interested in distinguishing these measurements depending on whether vehicles
are on the main highway or on the ramp, users can utilize the functions (as shown above)
with the suffix only highway or only ramp, respectively.

• The get density per segment per edge is convenient if interested to partition the road
in consecutive regions of equal length. As such, it returns an array of density measurements
according to the partitioning of the road given the segment length input argument.

• Users can also request density information per vehicle type. This is accomplished with
the function get density on segment region on edge for type and the additional input ar-
gument of the vehicle type name (corresponding to the type name defined in the .rou.xml
file) in char*.

7.2 Speed Measurements

Speed information for a specified road region can be obtained by averaging the current longitu-
dinal speed of the vehicles currently within that prescribed region. The following functions are
available:

34

Important Note: Refer to the instructions in Section 7.1 above for density measurements.
The same principles are applicable for the available speed measurement function calls above as
well.

7.3 Flow Measurements with Detectors

For online flow measurements through the API, this is accomplished by placing loop detectors
in the network. We follow the infrastructure of SUMO for this,13 meaning that detectors are
placed through an additional-file (as called in SUMO), the existence of which is mentioned
when discussing the Configuration file format (see Section 6.1). As an example, we include
the 04 highway detectors scenario, where the detectors.add.xml file now contains 2 detectors, as
shown below:

There, the tag e1Detector (as in SUMO) is used for each detector to be specified. Then, we need
to define:

1. id: A unique string id.

2. lane: The lane name (as defined in the network file .net.xml). Note that the naming of
lanes is generated automatically by adding a suffix with the lane index (starting from the
rightmost lane). For example, if edge “long edge” contained two lanes, then “long edge 0”
would be the right lane, and “long edge 1” would be the left lane (indexing starts from
the bottom with respect to a top down view). Therefore, detectors measure the flow per
lane. This is important for applications with on-/off-ramps where we want to have separate
measurements for ramps and the main highway. Of course, one could simply accumulate
these values accordingly to obtain the total flow.

3. pos: This is the longitudinal position in meters (with respect to the beginning of the lane)
for the detector to be placed. Note that the system checks for improper values that exceed
the lane’s length. If so, the scenario will not load properly.

4. freq, file: The frequency of measurements (in seconds) for the output file with the filename
according to the second argument. This output file will contain flow measurements based on
the prescribed frequency. This feature directly stems from the existing SUMO application,
without any influence from our part. Note that this does not affect in any way the online
measurements of the API. As such, any arbitrary (but feasible) frequency value would
suffice for users not actually interested in this feature of SUMO.

If we load the scenario, detectors will be visualized as follows:

13Refer to https://sumo.dlr.de/docs/Simulation/Output/Induction_Loops_Detectors_%28E1%29.html for
more details

35

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/04_highway_detectors_scenario
https://sumo.dlr.de/docs/Simulation/Output/Induction_Loops_Detectors_%28E1%29.html

Notably, we have updated the visualization of detectors with a more minimal and unobtrusive
look with respect to the one in SUMO.14

Online Measurements from Detectors through the API The available functions for
detectors through the API in the code are the following:

Furthermore, the main file LaneFree.cpp in the lanefree plugin, contains the following code ex-
ample:

where we first obtain the array of detector ids (get detectors ids), its size, and take a measurement
from each detector (get detectors values) again in an array form. Then we iterate over the array,
get the string name of each detector (get detector name) as defined in the additional file; and
finally, print each name and value pair.

Important Notes:

• The detectors return the count of vehicles. As such, the flow (veh/h) should be calculated
according to the frequency that the user specifies.

• There are 3 different function calls to get detector measurements, namely:

14See https://sumo.dlr.de/docs/Simulation/Output/Induction_Loops_Detectors_%28E1%29.html#

visualisation

36

https://sumo.dlr.de/docs/Simulation/Output/Induction_Loops_Detectors_%28E1%29.html#visualisation
https://sumo.dlr.de/docs/Simulation/Output/Induction_Loops_Detectors_%28E1%29.html#visualisation

– get detectors values: returns an array with one measurement per detector (for all
detectors in the scenario)

– get detector value(detector id): returns a scalar with one measurement only for the
detector with id detector id

– get detector value for type(detector id, veh type): returns a scalar with one measure-
ment only for detector with id and only for the vehicle type with name (in char*)
veh type, corresponding to the vehicle type name that is defined in the route file
(.rou.xml).

• The detector’s counter resets after each get function (for all 3 ways above). Note that the
counter for each vehicle type is independent from the main counter of the detector, i.e., the
for type function has multiple counters (one per vehicle type) and is reset only from the
corresponding function call. In contrast, the general counter of a detector is reset either
from the get detectors values or get detector value(detector id).

8 Available Metrics

In this section, we specify all accessible metrics (either already available from SUMO that are
applicable in lane-free settings, along with new ones we have introduced) and provide accompa-
nying details regarding usage as well. We can distinguish two types of metrics that are available
to users, namely:

• Online Simulation Metrics in GUI: These are available through the GUI application
window. Refer to Section 8.1.

• Post Simulation Metrics in Logfiles: These are available post-simulation through
logfiles. Detailed instructions can be found in Section 8.2.

8.1 Online Simulation Metrics in GUI

Within the GUI application window, we leverage the existing SUMO infrastructure for online
metrics through available parameters,15 at 3 different levels, namely:

1. Overall road network: Once we have loaded a scenario, we can press the button as
shown below:

15Refer also to https://sumo.dlr.de/docs/sumo-gui.html for additional information

37

https://sumo.dlr.de/docs/sumo-gui.html

38

Then, we see the parameter window on top of the simulation:

The naming suggests the meaning of each value. Notably, the “insertion-backlogged vehi-
cles” is the one indicating the number of vehicles currently in the virtual queue of SUMO
due to unhandled demand at entry points (i.e., vehicles that should enter the road but
could not due to limited availability of the road). All parameters stem from the existing
application, with the exception of “collisions (omits consec.)” that we included. This pa-
rameter measures collision occurrences but only counts the first time-step that two vehicles
collided. In addition the running vehicles information (vehicles currently on the road) is
displayed at the bottom part, within the button that launches this window.

Furthermore, parameters that are Dynamic (they can change over time) have a button
(instead of the ×mark) on the right side. This will launch a new window that automatically
creates a plot according to these values over time. See related information in:https:
//sumo.dlr.de/docs/sumo-gui.html#plotting_object_properties.

Important Note: All these online plots can be directly logged in a simple .csv file format
for post processing through the save button that appears on top.

2. Road lane: Likewise, we can navigate to a lane, and with a right-click anywhere on the
road (but not on top of a vehicle):

39

https://sumo.dlr.de/docs/sumo-gui.html#plotting_object_properties
https://sumo.dlr.de/docs/sumo-gui.html#plotting_object_properties

and launch the parameter window per lane:

where apart from the lanes characteristics (length, width), an important parameter relevant
to flow demand handling is the “pending insertions [#]”, which measures the virtual queue
of vehicles not being able to be inserted in the road for the specific lane.

40

3. Vehicle: Finally, we can focus on a specific vehicle, by simply right-clicking on top of it:

Important Note: The “Start Tracking” functionality is commonly used to visually track
the movement of the pointed vehicle. Essentially, the GUI locks to the center of the vehicle
as it moves. This is heavily utilized e.g., for video purposes to exemplify a vehicle movement
strategy.

The set of parameters show the online state of the vehicle. The parameters with the (LF)
indication at the end are the ones that we included and are relevant to lane-free vehicle
movement. Additionally, the parameters including the bc term in their name are relevant
only for vehicles operating with the bicycle model. Note that several parameters of SUMO

41

assuming a lane-based system are now not relevant and contain values that a) do not have
any importance, e.g., last lane change, or b) the different nature of lane-free movement can
result in measurements for default variables that are outright mishandled.

8.2 Post Simulation Metrics in Logfiles

Additionally, we provide the option to generate log files capturing metrics for the entire simulation
run, available upon the completion of a scenario. These logs include detailed information for
individual vehicles as well as aggregated metrics and overall summaries of the simulation.

Two distinct types of output log files are available:

• TripInfo: This log file follows the structure of the original TripInfo output format. It
records essential details about the trip of each vehicle, such as departure and arrival times,
associated lanes, and other relevant data. Comprehensive documentation for all fields
included in this log file is available at https://sumo.dlr.de/docs/Simulation/Output/
TripInfo.html. An example of a TripInfo log from an executed scenario is provided below:

• Statistic: This log file also follows the original Statistic output format but includes several
additional fields. Its primary purpose is to provide a holistic summary of the simulation,
including metrics on vehicle and pedestrian dynamics, safety indicators, trip statistics, and
overall performance measures. This output is designed to evaluate the behavior and effi-
ciency of the entire simulation rather than focusing on individual vehicles. While most
definitions are available in the official documentation at https://sumo.dlr.de/docs/

Simulation/Output/StatisticOutput.html, we additionally provide the following:

– delayAvg (s): average delay of vehicles based on the total expected time. The latter
is computed by dividing the total route length by each vehicle’s desired speed. Only
exited vehicles are included in these metrics.

– delayAvgNoNeg (s): positive-only average delay of vehicles based on the total ex-
pected time (this includes only the vehicles slower than their desired speed).

– delayAvgOnlyNeg (s): negative-only average delay of vehicles based on the total
expected time (this includes only the vehicles faster than their desired speed).

42

https://sumo.dlr.de/docs/Simulation/Output/TripInfo.html
https://sumo.dlr.de/docs/Simulation/Output/TripInfo.html
https://sumo.dlr.de/docs/Simulation/Output/StatisticOutput.html
https://sumo.dlr.de/docs/Simulation/Output/StatisticOutput.html

– totalTimeSpent hours (veh · h): measures the accumulated travel time summed over
all vehicles introduced to the simulation.

An example of a Statistic log from an executed scenario is provided below:

The filenames for these log files can be customized by specifying the desired names in the
corresponding parameters of the .sumocfg file for the scenario (tripinfo-output for the TripInfo
log and statistic-output for the Statistic log):

9 Store and Replay Scenarios

In some scenarios, the runtime performance can be significantly affected by the computational
demands of complex controllers or the limited processing power of low-end hardware. This often
results in slow or unstable simulations with noticeable stuttering. While these issues do not
affect the accuracy of the simulation or the behavior of the agents, they can be problematic
when trying to present the simulation in real time, such as for creating video recordings or
monitoring controller performance visually.

To address this, we have introduced a feature that allows the behavior of a scenario exe-
cution to be recorded for subsequent replay by storing data. This replay mechanism bypasses

43

the need for controller inputs or computations during playback, thereby creating a lightweight
reproduction of the exact scenario execution.

As a reminder we provide an example of a .sumocfg scenario file:

To enable recording or replaying a scenario execution, the following configuration steps must
be performed:

• Recording a Scenario: Set the .sumocfg parameter video-record-or-replay (line 13) to
“record”. This will ensure that all vehicle actions are logged in the file specified by the
output parameter video-logfile (line 18).

• Replaying a Scenario: Change the value of video-record-or-replay (line 13) to “replay”.
This will replicate the actions stored in the video-logfile (line 18) with minimal computa-
tional overhead or delay.

Any other value of the parameter video-record-or-replay (such as the default value of “noth-
ing”) will result in a standard execution of the scenario without enabling recording or replay
functionality.

Important Notes:

• If the underlying controllers driving the vehicles incorporate any stochastic elements, these
will be precisely replicated during replay, regardless of how many times the same stored data
is replayed. To examine different outcomes under varying conditions, multiple recordings
should be generated.

• Bypassing controller inputs during replay disables a significant portion of the underlying
simulation code. While this feature ensures the visual validity of the simulation, it should
not be relied upon for generating log outputs.

• For Internal Boundary Control application (see Section 12), the vehicles’ movement in
replay mode will properly follow the trajectories based on the moving boundaries. However,
online visualization of the boundaries moving is not supported in this mode.

44

10 Ring-Road

In TrafficFluid-Sim, we emulate ring-road scenarios in highway environments by placing ve-
hicles about to exit accordingly at the beginning of the road. In this case, the vehicles are
directly “transmitted” to the starting point of the segment instead of exiting. Longitudinal
distance dx(i, j) information is properly adjusted for this feature, e.g., a vehicle towards the
end of the road segment will properly observe vehicles at the starting point through the API
function get relative distance x(ego id, other id). In order to introduce vehicles in the ring-road,
the recommended solution is to utilise the API instead of flow demand at origin points (due
to the nature of the ring-road environment), and insert the desired density of vehicles when
initializing the simulation within the simulation initialize function. As such, we contain the
05 ring road emulation scenario, which is essentially the highway scenario, but without the in-
clusion of flow demands. Changes for ring-road settings involve updating the code accordingly,
as we show below.

We contain an example in the lanefree plugin code, within the simulation initialize, on how
to place vehicles on the road with initial conditions:

Through this code, we insert vehicles at the first time-step of the simulation and place them in
rows according to the specified spacing. See below a snapshot of the simulation at the first step
(when setting n init=50):

45

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/05_ring_road_emulation_scenario

A necessary change in the code is to instruct vehicles upon entry to follow this ring-road
behaviour instead of exiting. This is accomplished within the event vehicle enter function, and
by setting the set circular movement function argument accordingly:

We should replace with: set circular movement(veh id,true).

Important Note: Delay-related metrics are now unsuitable for this scenario.

11 On-Ramps and Off-Ramps

A scenario example containing both an off-ramp and an on-ramp, with vehicles following all
possible routes can be found in 06 highway on off ramps scenario folder.

11.1 Scenario Setup

There, users need to have a proper look at the newtwork (.net.xml) file to observe how off-ramps
and on-ramps can be added. This can be done either directly through the xml file, or by making
use of the netedit tool, as discussed in Section 6.1.

The specific scenario is a highway that contains one off-ramp and one on-ramp, therefore all
vehicles to be inserted can follow one of the three possible routes. A small-scale setup of the
network is shown below:

To integrate ramps within a highway setting, we need to properly make use of lateral bound-
aries, as presented in Section 6.2. In this example, we have a more complex setup containing
multiple overlapping routes (e.g. vehicles exiting from an off-ramp while others exit from the
main highway), and therefore overlapping lateral boundaries. In the .rou.xml file of this example,
we first define the 3 routes corresponding to the three possible paths in our network, and then
the corresponding flow demands (refer to Section 6.3) for the initial time window [0, 300]s.

46

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/06_highway_on_off_ramps_scenario

Important Note: We remind the reader that the lateral boundaries can be visualized through
the relevant parameter (see Section 6.2).

Other Details: We can visualize the acceleration area (and deceleration area if needed) on an
on-ramp through the additional file format, based on existing functionalities of SUMO. Specifi-
cally, the additional (add.xml) file of the example now contains a white line below the definitions
of loop detectors through the “poly”16 xml tag, as follows:

where the shape parameter determines the two points (x1, y1) and (x2, y2) (on the global x-y
coordinates of SUMO) that form the following line in the network:

11.2 Controller/Lane-Free Plugin Setup

Typically, we examine these scenarios with the (double) double integrator model (see Sec-
tion 5.3.1) for vehicle movement strategies. As such, users need additionally to ensure that
vehicles follow the lateral boundaries of their routing scheme.

As discussed in Section 6.2, distance information is provided both from the left and right
lateral boundaries. Hence, a boundary controller can be developed for the vehicles to follow.
Within our code example (LaneFree.cpp file in the lanefree plugin folder) below, we contain a
simple lateral boundary controller based on the implementation in [9].

16See: https://sumo.dlr.de/docs/Simulation/Shapes.html

47

https://sumo.dlr.de/docs/Simulation/Shapes.html

Proper usage of get distance to road boundaries at is crucial for this operation. In this example,
each vehicle requests the distances through this API function according to a longitudinal distance,
as evident in the code. Naturally, this allows the vehicle to properly plan according to an
upcoming boundary change. Of course, this assumes that within the designated longitudinal
distance we examine: a) the lateral boundary (either left or right) at the current placement
already has an appropriate safety lateral distance, and b) the boundary will shift to the observed
distance as a monotonic function (i.e., no sudden changes in the boundary that would cause
“bulges”).

In the code example above, we have a simple heuristic rule that obtains a lateral placement
to target by taking the following into account: a) the lateral distance to the boundary, b) the
vehicle’s width, and c) an additional safety distance. Therefore, the actual lateral acceleration to
be applied stems directly from a PD controller that has as input this targeted lateral placement.

Important Note: This boundary controller example provides one way of dealing with bound-
aries. This serves as a working example to showcase the usage alongside the API function
that returns relevant distance information. Users can utilize this directly, extend it, or develop
something entirely different that may be better tied to their own controller. For instance, the
boundary controllers in [7, 2] has instead the form of a lateral acceleration bound based on
distance information (and the vehicle’s current speed).

12 Bidirectional Highways and Internal Boundary Control

We can directly extend the scenario above in a bidirectional highway environment, one that
contains on-ramps and off-ramps as well in each direction. Scenario example
07 highway bidirectional ibc scenario follows exactly the same design principles as above, but it
also contains the opposite direction in the road network. Notably, no change in the vehicles’
controller is required, given that the lateral boundaries are properly designed.

In the context of lane-free traffic, this bidirectional highway environment with on-ramps and
off-ramps is examined for the emerging lane-free application of Internal Boundary Control (IBC).
The provided example closely follows the scenario examined in [3]. Interested users can refer to
this paper for more details. In IBC application, the lateral boundary separating the two opposite
directions can be controlled and move according to the conditions of the road (based on online
measurements of density and flow), in order to grant more lateral capacity towards one direction;

48

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/07_highway_bidirectional_internal_boundary_control_scenario

and therefore increase efficiency by exploiting the available lateral capacity of the road. As such,
for IBC we assume that there is no physical separation of the two directions, and that lane-free
vehicles conform to a virtual separating boundary.

12.1 Scenario Setup

A small-scale version of the network setup (in the .net.xml) file is the following (network and
snapshot used in [3]):

This is achieved by simply mimicking the same network structure for the opposite direction with
proper placing of the new road edges and vertices. Likewise, in the route file (.rou.xml), we
need to additionally prescribe the routes of the opposite direction as well, along with the lateral
boundaries. Therefore, the route file (.rou.xml) now contains:

where new arguments (highlighted in red boxed) are needed in order to properly update the
boundaries through the API as we show below. Essentially, the values of leftBoundaryLevel-
Points for each route can be adjusted in an online manner. The control variable from the user’s
perspective is an array of normalized epsilon values (with the same array size), with values of 1
corresponding to the initial configuration in the rou.xml file. See also Equation 10 below.

Specifically:

• rightBoundaryConstant: is the value that will be used for the online adjustment of
the leftBoundaryLevelPoints through the API. For instance, given the boundary control
variable e for a specific leftBoundaryPoint, its adjusted value will be calculated as:

49

leftBoundaryPointAdjusted = rightBoundaryConstant (10)

+ e · (leftBoundaryPoint− rightBoundaryConstant)

Note that rightBoundaryConstant is an optional argument. By default, its value is set to
the maximum (or minimum, depending on the direction right/left) of rightBoundaryLevel-
Points.

• influencedBy: this additional argument can be used so that when epsilon values are up-
dated for one route’s left boundaries, then all other routes that have specified this influence
will have their epsilons updated automatically.

For instance, consider the route “main highway” and the route “on ramp to highway”.
When defining the boundaries for route “on ramp to highway”, we can specify the influ-
encedBy argument as “main highway”. This means that when we update the left boundary
on the main highway, the left boundaries on the route “on ramp to highway” will be up-
dated as well. For this to work, the influencer (in this example, ”on ramp to highway”)
must contain a subset of leftBoundaryOffsets of the influencer (“main highway”). E.g., if
“main highway” has leftBoundaryOffsets=“1000 2000 3000 4000 5000”, then
“on ramp to highway” must have at least two consecutive offsets for this to work, e.g., left-
BoundaryOffsets=“1500 2000 3000 4000 5000”, means that the segments within the “2000
3000 4000 5000” will be affected automatically by the epsilons used for the main highway.

12.2 Controller/Lane-Free Plugin Setup

The relevant function in the API for the online update of epsilon values is:

• set epsilon left boundary(char* route name, double* epsilon array,
size t epsilon array size)

with accompanying technical usage instructions in the header file:

and a simple code example within the LaneFree.cpp file:

50

For the purposes of this example, we simply set a constant value for the epsilons (and consequently
the lateral level points) that gives more lateral capacity to the right direction (from the top-
down view). Users interested in working with IBC should properly extend it, and combine it
with proper measurements (e.g. density, flow, as specified in Section 7) to establish a closed-
loop system. Refer to [3] for additional details, and in Section 3.2 of that paper for further
technical/practical guidelines that could potentially be useful in related endeavours.

A snapshot of the simulation environment based on this example follows:

13 Roundabouts

Roundabouts are quite distinct from the aforementioned scenarios, in the sense that the double
integrator model for the vehicle movement dynamics are not fitting in this case. We need to
properly handle the lateral movement of vehicles, so that they properly enter, exit and generally
navigate within the roundabout. Certainly, the double integrator can be technically employed
(users can directly examine the provided roundabout scenario with the example), but the in-
frastructure of SUMO does not exhibit smooth and realistic motion of vehicles as they navigate
between segments of the road.

Therefore, we suggest users to work with the bicycle model, and specifically with the option
for control over the global coordinates for movement strategies targeting roundabout scenarios.

51

Related details are provided in Sections 5.3.2, 5.3.3. Please refer also to [5, 6], which propose a
vehicle movement strategy for lane-free roundabout environments, and make use of the relevant
features in our simulation environment. Other related work in lane-free roundabouts, but without
the use of our microscopic simulation environment is [4].

The provided scenario 08 roundabout scenario involves a complex roundabout that resembles
the famous roundabout at the Arc de Triomphe in Paris, and was utilized for the experiments
in [6]. A snapshot of the simulation environment in this environment when populated with
vehicles and an appropriate controller follows:

Important Notes:

• Ad-hoc adjustments for a fully-fledged vehicle movement strategy are necessary in this
environment when operating with the global coordinates. Vehicles need to navigate ac-
cording to their designated route, and need to request such route-related information from
the API since the maneuvering is not handled automatically from the underlying map-
ping from local to global coordinates (as done otherwise). This is accomplished with the
API function: get edge of vehicle(veh id) that returns the residing edge of the requesting
vehicle, and other functions that return edge-related information given the vehicle’s rout-
ing: get destination edge id(veh id), get origin edge id(veh id), get next edge id(veh id),
get previous edge id(veh id). For instance, vehicles need to know the designated exit turn
and then plan their movement accordingly.

• Design of lateral boundaries is not applicable in this case, since it assumes a road structure

52

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/08_roundabout_scenario

that is not curved, and users need to properly integrate the dimensions and characteristics
of the roundabout accordingly.

• Neighbor information is properly adjusted for this environment, along with collision noti-
fication.

14 Intersection

We also include intersection scenarios, where four directions typically meet at a shared common
space. This setup lacks strict predefined rules for the shared area, making it a challenging but
important topic for traffic-related studies.

A preconfigured scenario 09 intersection scenario is included among the example files, pro-
viding insight into the design of intersections and guidance on constructing similar setups.

Additionally, two specific features are developed and examined within this context:

• opposite-direction movement with collision detection, and

• bicycles and pedestrians integration

This section will provide detailed instructions on configuring these features and discuss their
associated limitations.

14.1 Opposite Direction Movement

In intersections, the shared space lacks distinct areas allocated to specific directional flows.
Instead, an edge is shared among all directional flows simultaneously, meaning that collisions
occurring within the intersection’s shared space are not assigned by the simulator to any specific
directional flow. While the simulator handles such scenarios correctly, we observed that collisions

53

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/09_intersection_scenario

frequently occurred on conflicting edges closely outside the common area. Specifically, vehicles
would enter opposite or neighboring lanes while attempting to follow their controller trajectories,
resulting in head-on collisions that were not detected by the simulator. This issue highlighted
the need for detecting opposite-direction movements and associated collisions.

Opposite or neighboring lanes for this purpose cannot be officially defined in Netedit using
traditional tags. Instead, these labels must be manually specified after the network creation in
Netedit. More precisely, following the generation of the .net.xml file, it is necessary to manually
add a custom tag, “neigh lane”, to each edge with a designated neighboring lane. This tag should
include the ID of the opposite lane. An example of this configuration is shown in the following
snapshot, and a complete intersection example is included in the tutorial files:

Important Notes:

• Opposite lanes must always be of equal length. Discrepancies in length can result in invalid
internal calculations, leading to undetected collisions.

• Modifications to the network using Netedit will remove the “neigh lane” tags. As a result,
these tags must be re-added after any changes. It is strongly recommended to maintain a
backup of the .net.xml files when utilizing this feature.

14.2 Bicycles and Pedestrians

Another important feature for studying intersections is the inclusion of bicycles and pedestrians.
Intersections are often located in urban environments where bicycles and pedestrians are common,
introducing additional complexity. The need to account for those types of entities with differing
capabilities makes this a particularly challenging and valuable area of study.

54

To support this, we provide a set of new functions for the vehicle controller. These functions
allow access to a comprehensive list of bicycles and pedestrians in the network, including their
global positions and the edges of their origins and destinations.

To simulate flows of bicycles and pedestrians, specific additions must be made to the .rou.xml
file:

• Bicycle entities: a new type must be declared, after which flows can be defined similarly
to vehicle flows. An example is provided below:

• Pedestrian entities: for pedestrian flows, the “personFlow” method must be used, which
offers similar control variables to standard flow definitions but with a slightly different
syntax. An example is shown below:

The behavior or controller for those entities is designed separately:

• Bicycle entities: by default, bicycles utilize the IDM controller. A complete list of prede-
fined controllers is available at https://sumo.dlr.de/docs/Definition_of_Vehicles%

2C_Vehicle_Types%2C_and_Routes.html#car-following_models. When the “carFol-
lowModel” parameter is set to “LaneFree”, bicycles can be fully controlled by the custom
controller using the same functions available for vehicles.

• Pedestrian entities: Pedestrians currently use the predefined model “striping”. Fur-
ther details about this model can be found at https://sumo.dlr.de/docs/Simulation/
Pedestrians.html#model_striping.

55

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_models
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_models
https://sumo.dlr.de/docs/Simulation/Pedestrians.html#model_striping
https://sumo.dlr.de/docs/Simulation/Pedestrians.html#model_striping

Important Notes:

• All bicycles and pedestrians neglect any safety constraints, leaving this task up to the
controlled vehicles.

• Collisions are currently detected only between vehicles and bicycles. Moreover, only the
front part of the bicycle is considered its hitbox. Collisions involving the rear of the bicycle
are not registered.

15 Platoons

We provide functionality for spawning platoons of vehicles on the road, enabling the simulation
of groups of aligned vehicles that move together as a unit. Each platoon consists of a leader
(the vehicle at the front) and a specified number of followers. When a platoon is spawned, the
leader enters the simulation first, and lateral space behind it is reserved to ensure all followers
are successfully added to the simulation. This approach guarantees the correct formation and
behavior of the platoon as an integrated group. Multiple flows with platoons can coexist within
the same edge or lane.

Using the custom controller, each vehicle in a platoon can be individually controlled, allowing
for full customization of behavior. A set of dedicated functions is available for managing platoons:

• get all platoon ids(): returns a pointer to an array containing all unique platoon IDs. Each
platoon is assigned the ID of its leader.

• get all platoon ids size(): provides the size of the above array.

• get platoon vehicles ids(NumericalID platoon id): given a platoon ID, returns a pointer to
an array containing the IDs of all vehicles in the specified platoon.

• get platoon vehicles ids size(NumericalID platoon id): given a platoon ID, provides the
size of the above array.

Each type of platoon must be declared as a separate flow in the .rou.xml file. To enable
platoon functionality, the following field modifications and additions are required:

• insertionPolicy: this field must be set to “platoon” to activate platoon-specific behavior.

• number: represents the number of platoon leaders, not the total number of vehicles. For
instance, to simulate 5 platoons with 6 vehicles each, this field should be set to 5 (not 30).

• platoonSize: specifies the number of vehicles in each platoon. For the above example, this
value would be 6.

• platoonTimeStepDistance: indicates the time-step-based spacing between vehicles within a
platoon. By adjusting this value relative to the initial speed, the distance between vehicles
during insertion can be controlled.

56

An example of a .rou.xml file can be found in the following snapshot, taken from the scenario
configuration 10 platoons scenario in the tutorial files:

References

[1] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. Wiessner. Microscopic traffic simulation using
sumo. In 21st International Conference on Intelligent Transportation Systems (ITSC), pages
2575–2582, 2018.

[2] M. Malekzadeh, D. Manolis, I. Papamichail, and M. Papageorgiou. Empirical investigation of
properties of lane-free automated vehicle traffic. In 2022 IEEE 25th International Conference
on Intelligent Transportation Systems (ITSC), pages 2393–2400, 2022.

[3] M. Malekzadeh, D. Troullinos, I. Papamichail, M. Papageorgiou, and K. Bogenberger. Inter-
nal boundary control in lane-free automated vehicle traffic: Comparison of approaches via
microscopic simulation. Transportation Research Part C: Emerging Technologies, 158:104456,
2024.

[4] M. Naderi, M.-K. Mavroeidi, I. Papamichail, and M. Papageorgiou. Optimal orientation
for automated vehicles on large lane-free roundabouts. In 2023 62nd IEEE Conference on
Decision and Control (CDC), pages 8207–8214, 2023.

[5] M. Naderi, M. Papageorgiou, I. Karafyllis, and I. Papamichail. Automated vehicle driving
on large lane-free roundabouts. In 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC), pages 1528–1535, 2022.

[6] M. Naderi, M. Papageorgiou, D. Troullinos, I. Karafyllis, and I. Papamichail. Controlling au-
tomated vehicles on large lane-free roundabouts. IEEE Transactions on Intelligent Vehicles,
9(1):3061–3074, 2024.

[7] M. Papageorgiou, K.-S. Mountakis, I. Karafyllis, I. Papamichail, and Y. Wang. Lane-free
artificial-fluid concept for vehicular traffic. Proceedings of the IEEE, 109(2):114–121, 2021.

[8] D. Troullinos, G. Chalkiadakis, D. Manolis, I. Papamichail, and M. Papageorgiou. Lane-
free microscopic simulation for connected and automated vehicles. In IEEE International
Intelligent Transportation Systems Conference (ITSC), pages 3292–3299, 2021.

57

https://github.com/trafficfluid-dssl/trafficfluid-sim/tree/main/scenarios_examples/10_platoons_scenario

[9] D. Troullinos, G. Chalkiadakis, I. Papamichail, and M. Papageorgiou. Conditional max-
sum for asynchronous multiagent decision making. In Proceedings of the 24th International
Conference on Autonomous Agents and MultiAgent Systems, (Accepted), 2025.

58

	Overview
	Motivation
	How to cite
	Notes for Developers

	Setup in Windows 10/11
	Environment Variables
	Visual Studio Setup

	Setup in Ubuntu Linux
	Setup in Other Linux distributions and MacOS
	Lane-Free Plugin and Basic Principles for Designing Lane-Free Vehicle Movement Strategies
	Code Structure
	API
	Information Retrieval and Vehicle Control
	(Double) Double Integrator Model
	Bicycle Model
	Global Coordinates Control

	Basic Principles for Setting up Lane-Free Scenarios
	Setup for a Highway Scenario
	Lateral Boundaries in Lane-Free Traffic
	Flow Demand in Lane-Free Traffic

	Online Traffic Network Measurements
	Density Measurements
	Speed Measurements
	Flow Measurements with Detectors

	Available Metrics
	Online Simulation Metrics in GUI
	Post Simulation Metrics in Logfiles

	Store and Replay Scenarios
	Ring-Road
	On-Ramps and Off-Ramps
	Scenario Setup
	Controller/Lane-Free Plugin Setup

	Bidirectional Highways and Internal Boundary Control
	Scenario Setup
	Controller/Lane-Free Plugin Setup

	Roundabouts
	Intersection
	Opposite Direction Movement
	Bicycles and Pedestrians

	Platoons
	References

